Subscribe to RSS
DOI: 10.1055/a-2589-5099
Transient N-Aziridinyl Radicals in Olefin Functionalization
The authors gratefully acknowledge financial support from the National Institutes of Health (R35GM138114) and the Welch Foundation (A-1907).

Abstract
Aziridines are the smallest nitrogen-containing heterocycles and are responsible for the biological activity of aziridine-natural products and active pharmaceutical ingredients (APIs). Classically, aziridines are prepared from acyclic precursors via 1) [2+1] cycloaddition of a nitrene equivalent with an olefin, 2) [2+1] cycloaddition of a carbene equivalent with an imine, or 3) via intramolecular cyclization of β-functionalized amines. In comparison, introduction of intact aziridines is an uncommon disconnection. Here, we highlight the recent development of N-aziridinyl radicals as novel intermediates in synthetic chemistry that enable olefin hydroxyaziridination. These intermediates, generated by photoredox activation of N-pyridinium aziridine precursors, afford access to products of a heretofore unknown epoxide opening with N-aziridine nucleophiles and introduce new disconnections of olefin aziridination chemistry.
1 Introduction
2 Classical Aziridination Methods
3 Aziridine-Group Transfer
4 Conclusions
Key words
aziridines - olefin functionalization - nitrogen-centered radicals - N-aminopyridinium saltsPublication History
Received: 10 March 2025
Accepted after revision: 16 April 2025
Accepted Manuscript online:
16 April 2025
Article published online:
12 June 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Ismail FM. D, Levitsky DO, Dembitsky VM. Eur. J. Med. Chem. 2009; 44: 3373
- 1b Dank C, Ielo L. Org. Biomol. Chem. 2023; 21: 4553
- 2a Schneider C. Angew. Chem. Int. Ed. 2009; 48: 2082
- 2b Stanković S, D'Hooghe M, Catak S, Eum H, Waroquier M, Van Speybroeck V, De Kimpe N, Ha H.-J. Chem. Soc. Rev. 2012; 41: 643
- 2c Sabir S, Kumar G, Verma VP, Jat JL. ChemistrySelect 2018; 3: 3702
- 2d Furniel LG, Corrêa AG. ChemPhotoChem 2024; 8: e202400120
- 3a Nam W. Acc. Chem. Res. 2007; 40: 522
- 3b He J, Ling J, Chiu P. Chem. Rev. 2014; 114: 8037
- 3c Farwell CC, Zhang RK, McIntosh JA, Hyster TK, Arnold FH. ACS Cent. Sci. 2015; 1: 89
- 4a Jat JL, Paudyal MP, Gao H, Xu Q.-L, Yousufuddin M, Devarajan D, Ess DH, Kürti L, Falck JR. Science 2014; 343: 61
- 4b Roychowdhury P, Samanta S, Tan H, Powers DC. Org. Chem. Front. 2023; 10: 2563
- 4c Hao G.-L, Wang J, Mou S.-B, Luo M.-P, Teng Q, Wang S.-G. ChemCatChem 2024; 16: e202400791
- 5a Ju X, Lee M, Leung JC, Lee J. Eur. J. Org. Chem. 2025; e202401414
- 5b Sweeney JB. Chem. Soc. Rev. 2002; 31: 247
- 6a Müller P, Fruit C. Chem. Rev. 2003; 103: 2905
- 6b Darses B, Rodrigues R, Neuville L, Mazurais M, Dauban P. Chem. Commun. 2017; 53: 493
- 6c Tan H, Samanta S, Maity A, Roychowdhury P, Powers DC. Nat. Commun. 2022; 13: 3341
- 6d Tan H, Thai P, Sengupta U, Deavenport IR, Kucifer CM, Powers DC. JACS Au 2024; 4: 4187
- 7a Degennaro L, Trinchera P, Luisi R. Chem. Rev. 2014; 114: 7881
- 7b Dequina HJ, Jones CL, Schomaker JM. Chem 2023; 9: 1658
- 8 Maurer SJ, Petrarca de Albuquerque JL, McCallum ME. ChemBioChem 2024; e202400295
- 9a Zard SZ. Chem. Soc. Rev. 2008; 37: 1603
- 9b Jiang H, Studer A. CCS Chem. 2019; 1: 38
- 9c Chen N, Xu H.-C. Green Synth. Catal. 2021; 2: 165
- 9d Kwon K, Simons RT, Nandakumar M, Roizen JL. Chem. Rev. 2022; 122: 2353
- 9e Pratley C, Fenner S, Murphy JA. Chem. Rev. 2022; 122: 8181
- 10a Heuger G, Kalsow S, Göttlich R. Eur. J. Org. Chem. 2002; 1848
- 10b Noack M, Göttlich R. Chem. Commun. 2002; 536
- 10c Wang J.-D, Liu Y.-X, Xue D, Wang C, Xiao J. Synlett 2014; 25: 2013
- 10d Hemric BN, Shen K, Wang Q. J. Am. Chem. Soc. 2016; 138: 5813
- 10e Hemric BN, Chen AW, Wang Q. ACS Catal. 2019; 9: 10070
- 10f Li Y, Liang Y, Dong J, Deng Y, Zhao C, Su Z, Guan W, Bi X, Liu Q, Fu J. J. Am. Chem. Soc. 2019; 141: 18475
- 10g Falk E, Makai S, Delcaillau T, Gürtler L, Morandi B. Angew. Chem. Int. Ed. 2020; 59: 21064
- 10h Govaerts S, Angelini L, Hampton C, Malet-Sanz L, Ruffoni A, Leonori D. Angew. Chem. Int. Ed. 2020; 59: 15021
- 10i Li Y, Bao J, Zhang Y, Peng X, Yu W, Wang T, Yang D, Liu Q, Zhang Q, Fu J. Chem 2022; 8: 1147
- 10j Zhao C, Zhu D, Fu J. Trends. Chem. 2022; 4: 1056
- 11 Hansen T, Nin-Hill A, Codée JD. C, Hamlin TA, Rovira C. Chem. Eur. J. 2022; 28: e202201649
- 12a Lalevée J, Allonas X, Fouassier J.-P. J. Am. Chem. Soc. 2002; 124: 9613
- 12b Hioe J, Šakić D, Vrček V, Zipse H. Org. Biomol. Chem. 2015; 13: 157
- 13 Biswas P, Maity A, Figgins MT, Powers DC. J. Am. Chem. Soc. 2024; 146: 30796
- 14 Samanta S, Biswas P, O'Bannon BC, Powers DC. Angew. Chem. Int. Ed. 2024; 63: e202406335
- 15 Liu Y, Wang Q.-L, Chen Z, Zhou C.-S, Xiong B.-Q, Zhang P.-L, Yang C.-A, Zhou Q. Beilstein J. Org. Chem. 2019; 15: 256
- 16 Cismesia MA, Yoon TP. Chem. Sci. 2015; 6: 5426